Strava App Hexsticker

In this post, I want to describe how I created a hex sticker for one of my shiny apps. The app itself lets users interactively explore their Strava data. Because I called the app SummitR, I decided to display one of the most famous summit finishes in cycling history: Alpe d’Huez. I am using the following packages: library(hexSticker) library(tidyverse) library(pins) The hexSticker package is used to create the final hex sticker.

What makes me tick? Strava Heartrate Analysis

In this post, I want to explore the heart rate data of my Strava Activities. Heart rate can be considered as a measurement of the intensity of an physical activity. So in this post, I want to find out, what are the driving forces behind the intensity level of my activities. For future activities I would like to be able to determine, if the activity was less or more exhausting than comparable activities.

Strava Data

I am a vivid runner and cyclist. Since a few years, I’m recording almost all my activities with some kind of GPS device. I record my runs with a Garmin device and my bike rides with a Wahoo device. Both accounts get synchronized with my Strava account. I figured that it would be nice to directly access my data from my Strava account. In the following text, I will describe the progress to get the data into R.

Getting Over It

This summer I crossed the alps with my road bike. I’ve recorded the whole ride and as a nice memory, I would like to visualise this ride. A short time ago I’ve discovered the awesome R package drake. The use of this package transformed the way I do my analysis and it helps me to make my post more reproducible. The following blog post describes the underlying workflow, after which I’ve developed the underlying package transalp for this post.

Vive le Tour

Recently I came across an excellent talk about the gganimate package. In order to try it out, I’ve decided to collect and analyze some data from one of my favorite sporting events: Le Tour de France. In this post, I will describe how to get the data using the rvest package. After collecting the data, I will describe how to create animations using the gganimate package. At first, load all important libraries.

Predicting the Speed of my Bike Rides

There is a new package in the tidyverse ecosystem for modeling. Like the tidyverse, the new tidymodels package is a collection of packages. It follows the same basic underlying principles of the tidyverse package, but the central topic of this collection of packages is modeling. Since it’s not around for long, I decided to give it a go on my own datasets. As a rough guideline I followed the great blog posts from Julia Silge’s blog.

Ridge Plot Strava Rides

In this post, I want to explore my hardest Strava rides. By ‘hard’ rides, I am talking about the activities with the highest positive altitude, that I had to overcome. As a visualisation technique, I wanted to try out a so called ‘Ridge Plot’. These type of plots resamble the iconic cover art for Joy Division’s album Unknown Pleasures. First load all my strava activities from a private Github repository.

TidyTuesday Tour de France

The TidyTuesday project is a weekly social data project in R, where participants get the chance to analyse a new dataset every week. The task is to wrangle and explore the data with the tools that R provides. This weeks TidyTuesday dataset is about Tour de France results. As a big Fan of the Tour, this is a good opportunity to create some interesting analysis. Data First load the needed libraries:

Tour des Vosges

In this post, I want to visualise my bike ride to the Tour de France this summer. The Tour visited Alsace and the Vosges this summer, which is near my home town. I’ve tracked my trip with a GPS device and uploaded it to Strava. Data Load libraries and general settings. Already define the start and end date of my trip, to make it easier to find the relevant Strava activities later.

Traufgänge Albstadt

In this post, I want to visualise some hiking paths near my hometown. The so called ‘Traufgänge’ are some panoramic tours, that pass through spectacular natural scenery along a steeply declining Albtrauf. This post will describe the progress to scrap, preprocess and visualise the data. The whole process is put together in one big drake plan. I will describe the most important functions, data frames and plots in more detail: